Development of ERK Activity Sensor, an in vitro, FRET-based sensor of Extracellular Regulated Kinase activity

نویسندگان

  • Harry M Green
  • José Alberola-Ila
چکیده

BACKGROUND Study of ERK activation has thus far relied on biochemical assays that are limited to the use of phospho-specific antibodies and radioactivity in vitro, and analysis of whole cell populations in vivo. As with many systems, fluorescence resonance energy transfer (FRET) can be utilized to make highly sensitive detectors of molecular activity. Here we introduce FRET-based ERK Activity Sensors, which utilize variants of Enhanced Green Fluorescent Protein fused by an ERK-specific peptide linker to detect ERK2 activity. RESULTS ERK Activity Sensors display varying changes in FRET upon phosphorylation by active ERK2 in vitro depending on the composition of ERK-specific peptide linker sequences derived from known in vivo ERK targets, Ets1 and Elk1. Analysis of point mutations reveals specific residues involved in ERK binding and phosphorylation of ERK Activity Sensor 3. ERK2 also shows high in vitro specificity for these sensors over two other major MAP Kinases, p38 and pSAPK/JNK. CONCLUSION EAS's are a convenient, non-radioactive alternative to study ERK dynamics in vitro. They can be utilized to study ERK activity in real-time. This new technology can be applied to studying ERK kinetics in vitro, analysis of ERK activity in whole cell extracts, and high-throughput screening technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetically encoded fluorescent sensor of ERK activity.

The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), opt...

متن کامل

Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity

Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imaging small neuronal compartments, such as single dendritic spines in brain slices. Here we improved...

متن کامل

REV, A BRET-Based Sensor of ERK Activity

Networks of signaling molecules are activated in response to environmental changes. How are these signaling networks dynamically integrated in space and time to process particular information? To tackle this issue, biosensors of single signaling pathways have been engineered. Bioluminescence resonance energy transfer (BRET)-based biosensors have proven to be particularly efficient in that matte...

متن کامل

New techniques and methods in the study of the invasion, cell migration and MMPs activity in vitro and in animal models

Background & Objective: Cancer metastasis is the primary cause of cancer morbidity and mortality, it accounts for about 90% of cancer deaths. Cancer treatment has improved significantly, due to early detection and inhibition of cancer growth. The ability to invade and migrate is important in malignant tumor cells. The study of cell migration is valuable in cancer diagnosis, prognosis, drug dev...

متن کامل

A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification.

Kinase translocation reporters (KTRs) are genetically encoded fluorescent activity sensors that convert kinase activity into a nucleocytoplasmic shuttling equilibrium for visualizing single-cell signaling dynamics. Here, we adapt the first-generation KTR for extracellular signal-regulated kinase (ERK) to allow easy implementation in vivo. This sensor, "ERK-nKTR," allows quantitative and qualita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Chemical Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005